Current Epilepsy
Clinical Research

John W. Miller, MD, PhD
UW Regional Epilepsy Center
What New Things Have Been Recently Learned about Epilepsy?

Recent key Studies
How Dangerous is Epilepsy?

- People with uncontrolled epilepsy are at risk for injuries and accidents
- Some have serious progressive underlying conditions, such as brain tumors
- People with uncontrolled epilepsy have a higher risk of sudden death (SUDEP)

The risk has been difficult to measure

- It is different with different types of epilepsy, and with different degrees of seizure control.
- Many studies have underestimated risk because of lack of longterm and complete followup.
Long-term Followup of Childhood Epilepsy

- All children (<16 years, 245) with epilepsy in Southwest Finland identified from 1961-1964.
- Followed for 40 years. Seizure control measured every 5 years; mortality determined from many sources, including national registry.
- Overall death rate 0.7%/year, most seizure related.
- Most common cause (30%) SUDEP.
- The only significant predictor of mortality was failure to control the seizures.
- Death rate for those with uncontrolled seizures: 1.6% per year.
- After successful surgery, mortality rate same as general population.

Does Epilepsy Damage the Brain?

- People with uncontrolled epilepsy, especially temporal lobe epilepsy, often have memory problems.
- They also sometimes have some signs of brain atrophy on MRI scans.
- Are these two things connected?
- Are seizures the cause of this brain atrophy and memory problems?
Part of an Answer:

People with Uncontrolled Temporal Lobe Epilepsy Have Progressive Brain Atrophy

- Repeated MRIs in people with temporal lobe epilepsy over 2.5 years show progressive, subtle thinning of the cortex (gray matter) in the frontal, temporal and parietal lobes.
- This progresses more rapidly in those with more frequent seizures.
- After epilepsy surgery, people who were seizure free had less atrophy than those who were not.

What Does This Mean?

- The risk of epilepsy to life, and its effects on the brain are small over the short term.
- The long-term risks and consequences of epilepsy can be significant, and worse in those with uncontrolled, more frequent seizures.
- Even if seizures cannot be controlled, that efforts to reduce seizures as much as possible are important.
- New and better treatments are needed.
New Therapies: Ezogabine:
The AED Formerly Known as Retigabine

- Approved by FDA on June 13, 2011 under name Potiga as add-on treatment for adult focal epilepsy
- Unique mechanism: Neuronal potassium channel opener, opens KCNQ2 channel, activating M-current
- Effective in all animal seizure models tested
- Most common adverse effects in clinical trials: somnolence, dizziness, confusion, headache
- Effective adult dose 900-1200 mg/day
- Metabolism: half life, 8 hr
New Therapies: Other New Antiepileptic Medications

- Ganaxolone: Neuroactive steroid, works on GABA receptor, tested for focal seizures and infantile spasms.
- Brivaracetam: Related to levetiracetam (Keppra)
- Perampanel: Selective antagonist for the AMPA glutamate receptor, tested for focal seizures and Parkinson’s disease.
- Clobazam: Benzodiazepine, used in many other countries, licensed in U.S. on October 25, 2011, for the treatment of the Lennox-Gastaut Syndrome.
New Therapies: RNS

- Responsive neural stimulation: recording electrodes implanted directly over seizure focus.
- Microchip programmed to detect seizures, and respond to give electrical shocks to interrupt seizures.
- Electrodes permanently implanted over brain.
- Submitted to FDA for approval.
- Most promising for seizures coming from brain areas that cannot be safely taken out.
New Therapies: Thalamic Stimulation

- Deep brain stimulation: Electrodes implanted in the anterior thalamus to give periodic electrical pulses.
- Submitted to FDA for review.
- Improvement in seizure control in clinical trials compared to control group was modest.
<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSE</td>
<td>Radiosurgery or open surgery for epilepsy</td>
<td>NIH</td>
</tr>
<tr>
<td>Vanquix</td>
<td>Diazepam autoinjector for acute repetitive seizures</td>
<td>King</td>
</tr>
<tr>
<td>Eslicarbazepine</td>
<td>Controlled double blind add on study for refractory partial seizures</td>
<td>Easi</td>
</tr>
<tr>
<td>Brivaracetam</td>
<td>Controlled double blind add on study for refractory partial seizures</td>
<td>UCB</td>
</tr>
<tr>
<td>Focal Cooling</td>
<td>Focal cooling as prophylactic treatment for epilepsy</td>
<td>CURE/DOD</td>
</tr>
<tr>
<td>MONEAD</td>
<td>Maternal outcomes and neurodevelopmental effects of antiepileptic drugs</td>
<td>NIH pending</td>
</tr>
<tr>
<td>EPGP</td>
<td>Epilepsy phenome genome project</td>
<td>NIH</td>
</tr>
<tr>
<td></td>
<td>Reorganization of language prior to anterior temporal lobe surgery: Can deficits be mitigated?</td>
<td>NIH</td>
</tr>
<tr>
<td>MEW</td>
<td>Epilepsy self-management intervention research</td>
<td>CDC</td>
</tr>
<tr>
<td>Research Area</td>
<td>Sponsor</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Role of hyperpolarization-activated ion channels (HCN channels) in development of epilepsy</td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td>Antiepileptic efficacy study: Retrospective analysis of drug combinations at Fircrest</td>
<td>Royalty</td>
<td></td>
</tr>
<tr>
<td>Use of fMRI, language, memory, and IQ tests to identify brain structures and networks causing cognitive problems in epilepsy.</td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td>Use of noninvasive, dense array, 256 channel EEG to localize seizures and brain function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal analysis of the sleep EEG to lateralize and localize seizures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium currents in a mouse model of severe myoclonic epilepsy of infancy</td>
<td>NIH</td>
<td></td>
</tr>
<tr>
<td>Optimizing the efficiency of long-term video EEG monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecological validity of neuropsychological assessment in an epilepsy surgery sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid percussion injury model of post-traumatic epilepsy in the rat</td>
<td>NIH</td>
<td></td>
</tr>
</tbody>
</table>
VS

RS

ATL

ROS

Radiosurgery or Open Surgery for Epilepsy
Background: Radiosurgery for Mesial Temporal Epilepsy

- Régis et al, Epilepsia. 2004; 45(5):504-15
 - 21 patients with mesial temporal epilepsy, treated with 24 Gy radiosurgery
 - At 2 years, 65% seizure free
 - 5 had short term adverse effects of depression, headache, nausea, vomiting, or imbalance
 - No permanent neurological adverse effects except visual field changes

 - 9 of 15 patients (60%) were seizure free
 - Seizures stop after 12 months on average, often preceded by increase aura or seizures (6 patients)
Background: Radiosurgery for Mesial Temporal Epilepsy

- Multicenter trial comparing 20 and 24 Gy radiosurgery targeting hippocampus, amygdala and parahippocampal gyrus.
- 24 Gy patients had higher risk of transient headaches and steroid use.
- Seizure freedom for prior year at 36 months: 24 Gy 10/13 (77%); 20 Gy 10/17 (59%).
- In this uncontrolled study, the risk of verbal memory decline with dominant side radiosurgery less than half of what is reported for anterior temporal lobectomy.

ROSE: Hypotheses

- Radiosurgery seizure freedom at 25-36 months no worse than temporal lobectomy
- With speech dominant procedures, risk of verbal memory decline greater with temporal lobectomy than radiosurgery
- Similar quality of life improvements with both methods
- Radiosurgery cost effective compared to temporal lobectomy
ROSE: Criteria for Enrollment

- Refractory epilepsy with mesial temporal sclerosis, with concordant EEG and MRI who would otherwise be offered surgery.
- ≥ 3 complex partial seizures in 3 months on stable AEDs.
- Age ≥ 18; IQ ≥ 70; no visual field deficits; no other MRI abnormalities; no severe medical or progressive neurological condition.
- No severe psychiatric or substance abuse condition or active nonepileptic seizures.
Focal Cooling

- Preliminary evidence in experimental animals that cortical cooling can block seizures in a model of chronic focal epilepsy.
- Purpose of subproject to determine the degree of intraoperative surface cooling necessary to achieve ~1.2°C cooling 5 to 10 mm into human neocortex.
- Joint project with Washington University in St. Louis.
- UW: 4-5 patients where planned resections include the entire region cooled.
Managing Epilepsy Well

- Purpose is to develop an epilepsy self-management intervention and test it on patients
- 1. Needs assessment to tailor a self-management program specific to the medical and psychosocial needs of patients with epilepsy.
- 2. Randomized, controlled trial of effectiveness of epilepsy self-management intervention.
- 3. Determine variables predicting the effectiveness of this intervention.
- 4. Disseminate the epilepsy self-management program.
NEAD

Neurodevelopmental Effects of AEDs

- Identify pregnant women on monotherapy with phenytoin, carbamazepine, valproate, lamotrigine.
- Assess and follow offspring prospectively.
- Main findings:
 - Serious adverse fetal outcomes: carbamazepine 8.2%, lamotrigine 1.0%, phenytoin 10.7%, and valproate 20.3%
 - IQ at age 3 compared to children exposed lamotrigine:
 - Valproate 9 points lower (P=0.009)
 - Phenytoin 2 points lower
 - Carbamazepine 3 points lower
MONEAD proposal:
Maternal Outcomes and Neurodevelopmental Effects of AEDs

- **Candidate women:**
 - Pregnant with epilepsy on levetiracetam, lamotrigine, or carbamazepine
 - Pregnant with epilepsy on polytherapy, or any monotherapy
 - Pregnant with epilepsy on no AED
 - Not pregnant with epilepsy on any therapy
 - Pregnant without epilepsy on no AEDs

- **Studied in women during pregnancy:**
 - seizures, AED levels, OB complications, depression

- **Studied in the offspring:**
 - VIQ and other neurodevelopmental effects
 - adverse neonatal outcomes, especially small for gestational age
 - % AED transfer via placenta, in breast milk and to nursing child
 - additional effects of nursing on IQ of offspring
Epilepsy Phenome Genome Project

- To create a database of phenotype and genotype data from patients with epilepsy and to investigate the genetics of common and rare forms of epilepsy and pharmacoresistance.

- Recruitment:
 - Sibling pairs with generalized or focal epilepsy
 - Triads (pt + both parents)
 - infantile spasms or LGS that is cryptogenic or due to FCD
 - epilepsy due to polymicrogyria or bilateral periventricular nodular heterotopia

- Data:
 - Clinical history, EEG/LTM samples, MRI images and blood

- Childrens Hospital leads study
Your Help is Needed